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Abstract. A Hamiltonian formalism is used to study the set of equations governing the 
changes in the amplitudes of some coherent waves due to their non-linear interactions. 
The main point of the present description is that it uses these complex wave amplitudes 
as canonical variables for a real Hamiltonian, thus greatly simplifying the algebra. Three 
examples are then dealt with. First, the Hamiltonian for the four-wave interactions is 
derived, in accordance with previous studies. Such systems are then known to be integrable. 
As a second example, one looks at a very special case of three interacting waves, where a 
fundamental interacts simultaneously with its second and third harmonic. Even though 
this system can be Hamiltonian, it seems to be non-integrable. Finally, attention is focused 
on the elliptically polarised third-harmonic generation, both in anisotropic and in isotropic 
media. This set of equations can be Hamiltonian under certain restrictions on the coupling 
coefficients, but it also appears to be non-integrable, because not enough independent 
invariants are found. 

1. Introduction 

Although the subject of non-linear interaction between some coherent waves has been 
dealt with rather extensively, both in plasma physics and in other fields (see, e.g., 
Weiland and Wilhelmsson (1977) for a rather comprehensive survey as far as plasma 
physics is concerned), attention has recently been focused on the Hamiltonian descrip- 
tion of such phenomena. This is mainly due to the search for integrability (or 
non-integrability) among multiple three-wave systems (e.g. Meiss 1979), where each 
triplet of waves shares a common wave. 

The three-wave case can easily be shown to be Hamiltonian and was already long 
known to be integrable, whereas for more complicated sets of interacting waves such 
properties are not always obvious or possible. It is the aim of this paper to look at 
three different applications of the Hamiltonian formalism to wave interactions in 
plasma physics: four-wave interactions, second- and third-harmonic generation and 
interaction between elliptically polarised waves. In these examples, full use will be 
made of the fact that in general the equations governing the wave amplitudes are 
written in complex notation and for such cases a Hamiltonian description in complex 
canonical variables was evolved elsewhere (Verheest 1985), where the complex wave 
amplitudes themselves serve as the canonical variables. As will become clear in the 
subsequent examples, this procedure greatly simplifies the algebra, compared to more 
traditional descriptions. 
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104 F Verheest 

2. Hamiltonian description in complex variables 

One is interested in a set of interacting waves, which in the linear approximation are 
just superposed: 

N 

Ull" = c a,(fslow) exp i(k) * x - W)tf,,J + cc. (2.1) 

Due to the non-linear interactions, the waves will see their amplitudes a, change slowly, 
according to 

, = I  

The usual procedure for wave-wave interactions in a Hamiltonian formulation (Falk 
1982, Menyuk et al 1983) has been to introduce as canonical variables the actions J ,  
and the angles 4,, such that 

a, = 4 exp i4, (2.3) 

4 = -aH/ad j  4, =aH/aJ,. (2.4) 

with 

The Hamiltonian H is here a function of all J, and 4, (and possibly t) .  To check 
whether (2.2) is a Hamiltonian system, one splits it into its real and  imaginary parts 
and uses the integrability conditions derived from (2.4): 

In view of the fact that (2.2) is given in complex variables, it seems advantageous to 
retain these variables as canonical variables and derive from (2.3) and (2.4) 

where H is now a function of all a, and 5, instead of all J, and 4,. The integrability 
conditions now become 

a a1 ari ari, 
aa, acr, aal aa, sal a q '  
A-- - A-- ai - a i ,  arj,= -- 

The last of these conditions can also be used in the form 

a a .  aril 
aal aa, 
-I=-- 

Applying this to (2.2), one need only check that 

(2.7) 

for the system to be Hamiltonian. The Hamiltonian itself can be found from 

aHlari, =J;  (2.10) 
with the proviso that it be a real function of its complex arguments. 

In the following sections we will give some examples of how one can usefully apply 
the above ideas to several wave interactions cropping up  in non-linear plasma physics 
and related areas of physics. 
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3. Four-wave interactions 

When using symmetric selection rules for the wavenumbers and the frequencies, 

4 C k l = O  w I -  - 6 - 0  
j = 1  ] = I  

(3.1) 

including a small frequency mismatch, one can write the equations for the slow 
evolution of the amplitudes of four interacting waves (Verheest 1982a) as 

al = y  a1a2a3a4 exp iSt,,,,+i C pIlalcila, +ivJaJ. 
4 

(3.2) 1 - - - -  
a, 1 = 1  

In order to eliminate the explicit dependence on t,,,, we substitute 

aJ = b, exp iwlt,l,, 

into (3.2) and find 

i _ _ _ _  4 
bJ == blb,b3b4+i C pjlblb;bj+itjbj 4 1 = 1  

with 

t] = VI -a1. 

The set (3.4) is derivable from the Hamiltonian 
4 4 

H = 2 Re( b, b2b, b4) + t cc pjlb16,bjb; + c tjbjb; 
j , l =  1 j = 1  

(3.3) 

(3.4) 

(3.5) 

(3.6) 

provided the coupling coefficients p,/ are symmetric 

PI1 =I*/] .  (3.7) 

b,b; = b,b; + C,, (3.8) 

The Hamiltonian is invariant, and together with the Manley-Rowe relations, of the form 

one finds that (3.4) is integrable, as was already shown before (Turner 1980, Verheest 
1982a). 

As a possible use of the present Hamiltonian formulation one could think of the 
interaction between several wave quadruplets having one or more waves in common. 
The corresponding multiple wave-triplet interaction has already been tackled in some 
detail (Meiss 1979, Falk 1982, Menyuk er a1 1983). 

4. Second- and third-harmonic generation 

The usual three-wave interactions obey the selection rules 

k3 = k l  + kz w , = w , + w 2 + 6 ’ .  (4.1 1 
A special case hereof is the second-harmonic generation ( SHG) ,  where 

k2=2k, w 2  = 2wl + A .  (4.2) 
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The simultaneous generation of the second and third harmonics (S+THG) is is a very 
special case of two coupled wave triplets, one in normal form (4.1) and one in degenerate 
form (4.2). This combination has as selection rules 

k3 = 3kl  k2 = 2kl 

w ,  = 3 w ,  + S w 2  = 2 w ,  + A  
(4.3) 

and was pointed out some years ago (Verheest 1976), but never thoroughly investigated. 
It is worth pursuing this approach a little further, in view of possible astrophysical 
applications. When one looks at the linear power spectrum of stellar oscillations in 
certain types of stars, such as ZZ-Ceti and Ap stars, one finds that most of the energy 
is concentrated in the fundamental and its second and third harmonics (see, for 
example, several papers presented at the Joint Discussion on Solar and Stellar Non- 
Radial Oscillations, XIX General Assembly of the IAU, 1985). These waves will 
non-linearly interact, with selection rules (4.3). 

The equations governing the slow changes in the amplitudes are different from 
either the usual three-wave or the SHG cases and turn out to be of the form 

U ,  = iAd2a, exp i6t +i5d,a2 exp iAt  

U 2  = ipd,a3 exp i6t+i(a: exp(-iAt) (4.4) 

U, = iva,a, exp(-iSt). 

A proper scaling can make the first set of coupling coefficients ( A ,  p, v )  equal, but not 
the second (5 , t )  or vice versa! 

There are several different possibilities to get rid of the explicit time dependence 
in (4.4). We put 

a, = b, 

a, = b, exp( - iAt)  (4.5) 

a, = b, exp[ -i( S + A )  t ]  

and find instead of (4.4): 

b, =iAb;b,+i&b, 

b2 = ip61 b3 + i5b: + i A  b, (4.6) 

6, = ivb, b2+ i(S +A)b3. 

This system is Hamiltonian when 

A = p = v  5 = 25. (4.7) 
As pointed out already, either one of these conditions can be fulfilled trivially by a 
suitable rescaling of the amplitudes, but the other cannot. The Hamiltonian is then 

H = 2 A  Re( 6, &b,) + 25 Re( bi b2) + A b2F2 + ( 6  + A )  b3 6, 

E = b, 6, + 2 b2F2 + 3 b, 6, . 

(4.8) 

(4.9) 
The factors two and three appear because of the original choice (2.3) of the action-angle 
variables. Such factors can be scaled out of E, but with corresponding changes in the 
coupling coefficients and thus in the Hamiltonian. As H and E are the only invariants 

and invariant. Another invariant is the wave energy: 
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at hand for the time being, the system is probably not integrable, as integrability 
requires a third independent invariant in involution with the other two. There are two 
indications pointing towards non-integrability, although they cannot constitute a com- 
plete proof of any sort. 

First of all, amplitude equations such as (4.4) or (4.6) have been obtained by some 
sort of averaging over the fast time scale, keeping the selection rules in mind (here 
(4.3)). If one looks for polynomial combinations of factors such as a,( fslow) exp i(k, - x - 
w,tfast) (or b,(&low) exp i(k, + x - yfhst)) which do  not change on the fast time scale, then 
one finds b,b,, b2b;, b3b,, Re(blb2b3), Re(6:b2), Re(b:b;), Re(b,6ib3), Re(b:6:) and 
combinations thereof. It is easily seen that E uses the first three of these forms and 
H the next two ones. It does not seem possible to combine Re(b:b;), R e ( b l c b 3 )  and 
Re( b i g )  into a third invariant, because of the different number of factors b, in these 
expressions. This becomes more evident when one contrasts the case of S + T H G  with 
the four-wave interactions in two triplets with two common waves, the so-called sum 
and difference frequency generation, which was proved integrable by Romeiras (1983). 
The selection rules are 

(4.10) 

and the corresponding (Hamiltonian) amplitude equations, in our complex notation: 

bl = iAb;b3 + ipb2b4 

b2=iAb;b,+ipb,K4 

b, = iAblb2 
(4.11) 

b4 = ipbl b;, 
If one were to look here for simple combinations which do  not change on the fast 
time scale, one would get bib;, b2b;, b,b;, b4&, Re(b;b;b3), Re(b;b2b4), Re(b:b;K4) 
and Re( b:6,b4). These give precisely the four independent invariants: 

E = b,b; + b,b; + b4K4 F = b2&+ b3b; - b464 

H = A  Re(SlJ2b3)+p Re(6,b2b4) 

i = 8 Ap [ ( A + p 2, Re ( b: 6, 54) + ( A - p ’) Re ( b: 6, b4)] - 1 6A ‘ p ’ ( b, E3 b4L4) 
(4.12) 

- [ ( A  + p ’) bI6, - ( A  ’ - I.(. ’) b2b;12. 

A second indication is given by some numerical work of Ford and Lunsford (1970) 
concerning the interactions of a fundamental with some of its harmonics, although 
not dealing explicitly with the case of S+THG. 

5. Elliptically polarised third-harmonic generation 

The usual non-linear wave-wave interaction formalism is written for waves, such as 
simple transverse or longitudinal waves, which can each be characterised by one scalar 
amplitude. However, in non-linear media such as plasmas, the propagation of linearly 
polarised waves will be the exception rather than the rule, since the non-linearities 
will change the polarisation characteristics, either by rotating the plane of polarisation 
or by inducing a perpendicular component such that the polarisation becomes elliptical. 
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A more general treatment of wave interactions thus has to allow for both an elliptical 
polarisation of the waves and an anisotropy of the plasma or the non-linear medium. 
This renders the description at once much more involved, and not only quantitatively. 
Vector ampliudes are now needed, entailing that the wave coupling is expressed through 
tensors rather than scalar coefficients. 

In order to get some feeling for these complications, one will want to treat first the 
simpler cases of SHG or of THG. In an isotropic noiseless medium no SHG is possible, 
hence one tackles the THG of an elliptically polarised wave in an (an)isotropic plasma, 
as this includes several known limiting cases. 

The linearised solution is a superposition of a fundamental with amplitude a and 
a third harmonic with amplitude b :  

(5.1) ulin = a(  rslow) exp i (  kz - utfast) + b( fs low) exp 3i( kz - utfast) + cc. 

For simplicity, perfect matching has been assumed in a noiseless medium. In view of 
what was developed earlier, it is fairly straightforward to include a frequency mismatch 
or some outside noise. 

The general starting point for non-linear elliptically or more generally polarised 
THG is then (Verheest 1982b) 

ti = iA i bdci + i K  i acia + i L  i bb;l 

b = iB i aaa +iM i acib + i N  i bib. 
(5.2) 

The coupling tensors A and B refer to the resonant part of the interaction, whereas 
the others characterise the non-resonant or self-interaction or Kerr terms. 

One finds that (5.2) is Hamiltonian provided 

Aklmn = 3 Bnmlk (5.3) 

and 

These last conditions also ensure that the Kerr terms do not change the wave energies, 
because 

This requirement is necessary, otherwise the method of non-linear wave coupling 
becomes mathematically ill-defined (Verheest 1982~) .  Two immediate invariants are 
the Hamiltonian: 

H = 2Re(Blaaab)+iKjaciaC+ Miacibb+fNIbbb& ( 5 . 6 )  

E = lla1/2+311b112. (5.7) 

and the total wave energy: 
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Even in the case of strict elliptical polarisation, when both a, and b, vanish, four 
independent invariants are needed and only two found! For the special case of an 
isotropic medium, all coupling tensors are of the form 

T k / m n  = T a k l a m n  T ’ a k m a l n  + T ” a k n 6 / m  (5.8) 

and (5.2) becomes, after a suitable rescaling which normalises the resonant coupling 
coefficients, 

6 = i ( 2 ~  /la1(2+ p I( bl12)a + 2 i ( ~ ’ a ’ +  d * b)d + i ( p ” a .  6+ 5’)b  + ip’a bb 

6 = i (  a’+ p”d b)a + ip‘a 66 + i(p lla/1’+2vllb(12)b + 2iv’b’b. 

the Hamiltonian (5.6) reduces to 

H = 2 Re( a2a  6) + K 1 1  a ( I 4 +  ~ ’ a ’ 5 ’  + p 1 1  a ll’ll b / I 2  

(5.9) 

+ p ‘ 1 ~ .  b12+p”la.6/2+vllb114+ v‘b26’ (5.10) 

and besides the total wave energy (5.7) there is a third, new and independent invariant: 

(5.11) 

If  other invariants exist for the isotropic THG, they can be proved to be of order six 
or higher in the wave amplitudes. 

The Hamiltonian and the total wave energy are scalar invariants. For the case of 
pure elliptically polarised waves, with x, y components for both waves, (5.1 1) becomes 

(5.12) 

and one finds only three independent invariants, where four are needed to render the 
system completely integrable. 

When a and b also include a longitudinal component, c corresponds to three scalar 
invariants. In this case, however, six invariants are needed, but only five have been 
found so far. 

The indications thus seem to point to the general non-integrability of the system 
describing THG of elliptically polarised waves, even in isotropic media, though the set 
of amplitude equations is Hamiltonian. Of course, some special cases are integrable, 
as was known already from other work. We will cite only two examples. First, the 
fundamental is linearly polarised and the third harmonic is generated out of the noise. 
In that case it will also be linearly polarised, with the same plane of polarisation. 
Second, if both waves are circularly polarised and required to remain so, then the 
waves do not exchange energy and the non-linear interaction influences only their 
phases. 

Especially in this paragraph, where complex vector amplitudes occur, one sees the 
usefulness of being able to work with complex canonical variables, because of the 
extreme economy in the number of equations and conditions one has to deal with, 
Splitting (5.2) into its real and imaginary parts and then checking whether and when 
the system is Hamiltonian or trying to find invariants such as (5.11) is so much more 
cumbersome and involved. Even for the scalar cases dealt with in the preceding 
paragraphs, the present method of using the complex wave amplitudes as (complex) 
canonical variables leads one as quickly as possible as far as one can get and to 
whatever conclusions one can draw. 

a x d + b x 6 = c. 

- -  
cz = a$, - iixar + bxb, - b,b, 
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